
The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

Snort Plug-in Development:
Teaching an Old Pig New Tricks
Ben Feinstein, CISSP GCFA
SecureWorks Counter Threat Unit™

DEFCON 16
August 8, 2008

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Snort v2 Architecture & Internals

• Snort Plug-in Development
 Dynamic Rules
 Dynamic Preprocessors

• Snort Plug-in API
 Examples, Pitfalls, Tips

• Releasing two Dynamic Preprocessors
 ActiveX Virtual Killbits (DEMO)
 Debian OpenSSL Predictable PRNG Detection (DEMO)

What’s In This Talk?

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Open-source IDS created by Marty Roesch

• First released for *NIX platforms 1998

• Commercialized by Sourcefire, Inc.

• Snort Inline mode now available for IPS
 Linux Bridge + Netfilter
 Linux ip_queue and nf_queue interfaces

• Snort v3 now making its way through Beta
 NOT discussing plug-ins for v3
 NOT discussing v3 architecture (ask Marty)

Snort Basics

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Highly modularized for extensibility

• Snort Rules & The Rules Matching Engine
 SF Engine Dynamic Plug-in
 Detection Plug-ins – implement/extend rules language

• Output Plugins
 Unified / Unified2
 Syslog
 Others

• Preprocessors
 Detection (i.e. alerting)
 Normalization (i.e. decoding)

Snort v2 Architecture
The Basics

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Dynamic Preprocessors
 Define a packet processing callback
 Preprocessor local storage
 Stream-local storage

• Dynamic Rules
 Writing Snort rules in C
 v2.6.x (?), added ability to register a C callback

• Before, only useful as form of rule obfuscation
 Used by some commercial Snort rulesets
 Relatively straight forward to RE using IDA Pro

Snort v2 Architecture
Run-time (Dynamic) Extensions

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Alert vs. Log
 Log contains packet capture data in addition

• Unified2 is extensible
 Additional data in simple Length|Value encoding

• Does your detection preprocessor need to log additional
alert data?
 Use Unified2!

• Examples
 Portscan Alerts
 Preprocessor Stats

Other Snort Internals of Interest
Unified2 Output Formats

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Familiarity with the C language

• Lack of code-level documentation
 What is available is out of date

• Snort-Devel mailing list
 Sourcefire developers are very responsive, thanks!
 Do your homework before mailing the list.
 You will get a better response and save everybody time.

• Source contains very basic examples
 Dynamic Rules
 Dynamic Preprocessor

Snort Plug-in Development
Getting Started

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Use the Source!

• Examine existing plug-ins
 SMTP
 DNS
 SSH
 SSL
 HTTP Inspect (bigger)

• Write small blocks of code and (unit) test them

• Ask questions on the Snort-Devel mailing list

Snort Plug-in Development
Getting Started, Continued

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Snort 2.8.x source tarball

• CentOS 5
 gcc 4.1
 glibc 2.5

• GNU Autoconf 2.61
 CentOS 5 packages older version 2.59

• GNU Automake 1.10
 CentOS 5 packages older version 1.9.6

Snort Development Environment

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Key header file "sf_snort_plugin_api.h"
 Defines C-struct equivalents to rule syntax

• You define global variable
 Rules *rules[]
 Framework will handle the rest

• Makefile
 Compile C files into object code
 Use GNU Libtool to make dynamic shared objects

• Dynamically loaded by Snort at run-time

Snort Dynamic Rules
Background

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Snort config
 --dynamic-detection-lib <.so file>
 --dynamic-detection-lib-dir <path to .so file(s)>

• Snort can create stub rules files for all loaded dynamic rules
 --dump-dynamic-rules <output path>

• "meta rules" must be loaded in Snort rules file
 alert tcp any any -> any any (msg:"Hello World!"; […]

metadata : engine shared, soid 3|2000001;
sid:2000001; gid:3; rev:1; […])

Snort Dynamic Rules
Configuration

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Different C structs for each rule option in rules language

• A Rule Option is a Union of different specific rule opt structs

• Rule struct w/ NULL-terminated array of Rule Options
 Rule Header
 Rule References

• Functions for matching
 content, flow, flowbits, pcre, byte_test, byte_jump

• Function to register and dump rules

Snort Plug-in API

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

static ContentInfo sid109content =
{

(u_int8_t *)"NetBus", /* pattern to search for */
0, /* depth */
0, /* offset */
CONTENT_BUF_NORMALIZED, /* flags */
NULL, /* holder for aho-corasick info */
NULL, /* holder for byte representation of "NetBus" */
0, /* holder for length of byte representation */
0 /* holder of increment length */

};

Snort Plug-in API
Content Matching

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

static RuleOption sid109option2 =
{

OPTION_TYPE_CONTENT,
{

&sid109content
}

};

ENGINE_LINKAGE int contentMatch(void *p, ContentInfo*
content, const u_int8_t **cursor);

Snort Plug-in API
Content Matching (Continued)

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

static PCREInfo activeXPCRE =
{

"<object|\snew\s+ActiveX(Object|Control)",
NULL,
NULL,
PCRE_CASELESS,
CONTENT_BUF_NORMALIZED

};
static RuleOption activeXPCREOption =
{

OPTION_TYPE_PCRE,
{

&activeXPCRE
}

};

Snort Plug-in API
PCRE Matching

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

ENGINE_LINKAGE int pcreMatch(void *p, PCREInfo* pcre,
const u_int8_t **cursor);

Snort Plug-in API
PCRE Matching (Continued)

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

static FlowFlags activeXFlowFlags = {
FLOW_ESTABLISHED|FLOW_TO_CLIENT

};

static RuleOption activeXFlowOption = {
OPTION_TYPE_FLOWFLAGS,
{

&activeXFlowFlags
}

};

ENGINE_LINKAGE int checkFlow(void *p, FlowFlags
*flowFlags);

Snort Plug-in API
Flow Matching

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

extern Rule sid109;
extern Rule sid637;

Rule *rules[] =
{

&sid109,
&sid637,
NULL

};

/* automatically handled by the dynamic rule framework */
ENGINE_LINKAGE int RegisterRules(Rule **rules);

Snort Plug-in API
Dynamically Registering Rules

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Optional C packet processing callback
 Returns RULE_MATCH or RULE_NOMATCH

sf_snort_plugin_api.h:

typedef int (*ruleEvalFunc)(void *);

typedef struct _Rule {
[…]
ruleEvalFunc evalFunc;
[…]

} Rule;

Snort Dynamic Rules
Implementation

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

my_dynamic_rule.c:

#include "sf_snort_plugin_api.h"
#include "sf_snort_packet.h"

int myRuleDetectionFunc(void *p);

Rule myRule = {
[…],
&myRuleDetectionFunc,
[…]

};

Snort Dynamic Rules
Implementation (2)

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

my_dynamic_rule.c (con't):

int myRuleDetectionFunc(void *p) {
SFSnortPacket *sp = (SFSnortPacket *) p;

if ((sp) && (sp->ip4_header.identifier % (u_int16_t)2))
return RULE_MATCH;

return RULE_NOMATCH;
}

• Question for Audience: What does this do?

Snort Dynamic Rules
Implementation (3)

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Another key header file: "sf_dynamic_preprocessor.h"

• Key struct: "DynamicPreprocessorData"
 Typically defined as extern variable named "_dpd"

• Contains:
 Functions to add callbacks for Init / Exit / Restart
 Internal logging functions
 Stream API
 Search API
 Alert functions
 Snort Inline (IPS) functions

Snort Dynamic Preprocessors
Background

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

void SetupActiveX(void) {
_dpd.registerPreproc("activex", ActiveXInit);

}

static void ActiveXInit(char *args) {
_dpd.addPreproc(ProcessActiveX,

PRIORITY_TRANSPORT, PP_ACTIVEX);
}

 static void ProcessActiveX(void* pkt, void* contextp) {
[…]
_dpd.alertAdd(GENERATOR_SPP_ACTIVEX,

ACTIVEX_EVENT_KILLBIT, 1, 0, 3,
ACTIVEX_EVENT_KILLBIT_STR, 0);

return;
}

Snort Dynamic Preprocessors
spp_activex.c

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• We can try calling rule option matching functions directly,
but need internal structures first properly initialized.

• Use dummy Rule struct and ruleMatch():
 ENGINE_LINKAGE int ruleMatch(void *p, Rule *rule);

• RegisterOneRule(&rule, DONT_REGISTER_RULE);

• Confusing, huh?
• RegisterOneRule will setup Aho-Corasick and internal ptrs
• But we don't always want to register the rules as an OTN

• So, pass in DONT_REGISTER_RULE. See?

Snort Plug-in API
Using Rules Within a Dynamic Preprocessor

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Available under:
 http://www.secureworks.com/research/tools/snort-

plugins.html

• Released under GPLv2 (or later)

• No Support

• No Warranty

• Use at Your Own Risk

• Feedback is appreciated!

SecureWorks Snort Plug-ins

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Inspects web traffic for scripting instantiating "vulnerable"
ActiveX controls
 As based on public vulnerability disclosures

• Preprocessor configuration points to local DB of ActiveX
controls
 Listed by CLSID and optionally method/property
 XML format (I know, I know…)

• Looks at traffic being returned from HTTP servers
 ActiveX instantiation and Class ID
 Access to ActiveX control's methods / properties

ActiveX Detection Dynamic Preprocessor

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Can presently be bypassed
 JavaScript obfuscation
 HTTP encodings
 But many attackers still using plain CLSID!

• Future Snort Inline support
 Drop or TCP RST the HTTP response

• Leveraging of normalization done by HTTP Inspect

• Enhance to use Unified2 extra data to log detected domain
name

ActiveX Detection Dynamic Preprocessor
Continued

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Uses matchRule(Rule*) from Snort Plug-in API
 Very convenient
 Not the most efficient

• Performs naïve linear search of CLSIDs
 Enhance to reuse HTTP Inspect's high-performance

data-structures?

• Uses Snort's flow match

• Performs content matching and PCRE matching

ActiveX Detection Dynamic Preprocessor
Internals

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

Live Demo

ActiveX Detection Dynamic Preprocessor

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Lack of sufficient entropy in PRNG delivered by Debian's
OpenSSL package

• Go see Luciano Bello and Maximiliano Bertacchini's talk!
 Saturday, 13:00 – 13:50, Track 4

• One of the coolest vulns of 2008!
 Pwnie for Mass 0wnage!

• Keys generated since 2006-09-17

• Keys generated with Debian Etch, Lenny or Sid
 Downstream distros such as Ubuntu also vulnerable

Debian OpenSSL Predictable PRNG Vuln
CVE-2008-0166

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

Debian OpenSSL Predictable PRNG Vuln
Dilbert (source: H D Moore, metasploit.com)

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

Debian OpenSSL Predictable PRNG Vuln
XKCD (source: H D Moore, metasploit.com)

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• From the Debian Wiki (http://wiki.debian.org/SSLkeys):

• "… any DSA key must be considered compromised if it has
been used on a machine with a ‘bad’ OpenSSL. Simply
using a ‘strong’ DSA key (i.e., generated with a ‘good’
OpenSSL) to make a connection from such a machine may
have compromised it. This is due to an ‘attack’ on DSA that
allows the secret key to be found it the nonce used in the
signature is known or reused.”

• H D Moore was all over this one with a quickness!
 Metasploit hosting lists of brute-forced 'weak' keys

Debian OpenSSL Predictable PRNG Vuln
It’s Bad!

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• You scanned your assets for SSH / SSL servers using the
blacklisted keys, right? (Tenable Nessus)

• You scanned all user home dirs for blacklisted SSH keys?
 Debian ssh-vulnkey tool

• You scanned all user homedirs, Windows Protected
Storage, and browser profiles for blacklisted SSL certs,
right?

• But what about connections to external servers that use
the vulnerable Debian OpenSSL?

Debian OpenSSL Predictable PRNG Vuln
Detection & Mitigation

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Goal: Detect SSH Diffie-Hellman Key Exchange (KEX)
where client and/or server are OpenSSH linked against
vulnerable Debian OpenSSL

• Just that detective capability is valuable
 Even w/ great technical controls in place, you're likely

missing:
• Users connecting to external servers using bad

OpenSSL
• Connections to/from external hosts that use bad

OpenSSL

• What else can we do?

Debian OpenSSL Predictable PRNG Preproc.

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Goal: Have preprocessor(s) "normalize" traffic by brute-
forcing the DH key exchange, decoding both sides of
session on-the-fly.
 Snort rule matching engine and other preprocessors can

then inspect unencrypted session
 Unencrypted sessions can be logged (Unified or PCAP)

• Potential issue w/ source code release
 Controls on the export of cryptanalytic software (US)

Debian OpenSSL Predictable PRNG Preproc.
Continued

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Alexander Klink
 http://seclists.org/fulldisclosure/2008/May/0592.html
 http://www.cynops.de/download/check_weak_dh_ssh.pl

.bz2

• Paolo Abeni, Luciano Bello & Maximiliano Bertacchini
 Wireshark patch to break PFS in SSL/TLS
 https://bugs.wireshark.org/bugzilla/show_bug.cgi?

id=2725

• Raphaël Rigo & Yoann Guillot
 New work on SSH and Debian OpenSSL PRNG Vuln
 Unknown to me until hearing about it at DEFCON
 http://www.cr0.org/progs/sshfun/

Debian OpenSSL Predictable PRNG Preproc.
Credits

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• A way for two parties to agree on a random shared secret
over an insecure channel.

• Server sends to Client
 p – large prime number
 g – generator of the field (Zp)* (typically 0x02)

• Client generates random number a
 Calculates ga mod p
 Sends calculated value to server

• Server generates random number b
 Calculates gb mod p
 Sends calcualted value to client

Diffie-Hellman Key Exchange for SSH
Do the Math!

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• DH shared secret is defined as both a function of a and of
b, so only parties that know a or b can calculate it.

• Client
 knows g, a and gb mod p
 Calculates shared secret as (gb)a = gab mod p

• Server
 knows g, b and ga mod p
 Calculates shared secret as (ga)b = gab mod p

Diffie-Hellman Key Exchange for SSH
Do the Math! (2)

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Eavesdropper knows g, ga mod p and gb mod p
• Can't calculate gab mod p from ga mod p and gb mod p
• Must solve the discrete logarithm problem

 No known (non-quantum) algorithm to solve in
polynomial time

 Polynomial-Time Algorithms for Prime Factorization and
Discrete Logarithms on a Quantum Computer

 Peter W. Shor, AT&T Research
 30 August 1995, Revised 25 January 1996
 arXiv:quant-ph/9508027v2

Diffie-Hellman Key Exchange for SSH
Do the Math! (3)

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Encryption IVs and Keys generated from DH shared secret
• VC, VS – Client / Server's SSH version announce string

• IC, IS – Client / Server's SSH_MSG_KEXINIT message

• KS – Server's Public Host Key

• H = hash(VC || VS || IC || IS || KS || ga mod p || gb mod p || gab mod p)

• SSH session_id = H of initial DH key exchange

• IV client to server: hash(gab mod p || H || "A" || session_id)
• IV server to client: hash(gab mod p || H || "B" || session_id)
• Enc Key client to server: hash(gab mod p || H || "C" || session_id)
• Enc Key server to client: hash(gab mod p || H || "D" || session_id)

Diffie-Hellman Key Exchange for SSH
Do the Math! (4)

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• If OpenSSH client or server is linked against vulnerable
Debian OpenSSL
 a or b is completely predictable based on ProcessID of

OpenSSH

• We can quickly brute force a or b.
 Only 32768 possibilites!

• If we know a or b, we can calculate DH shared secret
 gab mod p = (gb)a = (ga)b

• Once we know the DH shared secret, we have everything
needed to decrypt the SSH session layer!

The Debian OpenSSL PRNG and SSH DH GEX

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Tunneled Clear Text Passwords are compromised
 …if either client or server is using vulnerable OpenSSL
 RSA / DSA public key authentication is not affected

• Files or other data protected by SSH Session layer are
compromised
• …if either client or server is using vulnerable OpenSSL

• Observers can easily tell if either client or server is using
vulnerable OpenSSL
 …and proceed to decrypt the stream

The Debian OpenSSL PRNG and SSH DH GEX
The Impact

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

Live Demo

Detection of SSH Diffie-Hellman KEX using
vulnerable Debian OpenSSL

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Snort v3
 Complete redesign from the ground up
 Extremenly flexible and extensible architecture
 Snort 2.8.x matching engine plugs in as module
 HW optimized packet acquisition can be plugged in
 Lua programming language!

• Snort 2.8.3 (Release Candidate)
 Enhancements to HTTP Inspect

• Normalized Buffers for Method, URI, Headers,
Cookies, Body

• Content and PCRE matching against new buffers
 New HTTP normalization exposed in Snort Plug-in API

Snort Futures

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

• Snort is a powerful framework to work with
 APIs for alerting, logging, Streams, matching
 Why reinvent the wheel?

• Hopefully, you can take away needed info to start writing
your own plug-ins.

• Read the source code of other plug-ins, ask questions.

• Snort v2 is still evolving. If the APIs don't support
something you (and potentially others?) really need, ask
and ye may receive.

Wrapping It All Up

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

Thanks to DT, the Goons
and everyone who made

DEFCON a reality this year!

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

Greetz to DC404, Atlanta's DC Group!
Speakers: dr.kaos, Carric, David Maynor, Scott Moulton

& Adam Bregenzer
And our very own Goon, dc0de!

The Information Security Experts
Copyright © 2008 SecureWorks, Inc. All rights reserved.

Questions?
bfeinstein@secureworks.com

	Snort Plug-in Development: Teaching an Old Pig New Tricks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	 Live Demo
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Thanks to DT, the Goons and everyone who made DEFCON a reality this year!
	Greetz to DC404, Atlanta's DC Group! Speakers: dr.kaos, Carric, David Maynor, Scott Moulton & Adam Bregenzer And our very own Goon, dc0de!
	Questions? bfeinstein@secureworks.com

