
RE:Trace – Applied Reverse
Engineering on OS X

Tiller Beauchamp
SAIC

David Weston
Microsoft

DTRACE BACKGROUND
What Is DTrace™?

*Dtrace was created by Sun Microsystems, Inc. and released under the Common Development and Distribution
License (CDDL), a free software license based on the Mozilla Public License (MPL).

DTrace Background

• Kernel-based dynamic tracing framework
• Created by Sun Microsystems
• First released with Solaris™ 10 operating System
• Now included with Apple OS X Leopard, QNX
• June 10th, 2008, committed to CURRENT branch

of FreeBSD 7, Will be in 8 STABLE (John Birrell)
• OpenBSD, NetBSD, Linux?

*Solaris™ is a trademark of Sun Microsystems, Inc. in the United States and/or other countries.

DTrace Overview

• DTrace is a framework for performance
observability and debugging in real time

• Tracing is made possible by thousands of
“probes” placed “on the fly” throughout the system

• Probes are points of instrumentation in the kernel
• When a program execution passes one of these

points, the probe that enabled it is said to have
fired

• DTrace can bind a set of actions to each probe

DTrace Architecture

Source: Solaris Dynamic Tracing Guide

The D Language

• D is an interpreted, block-structured language
• D syntax is a subset of C
• D programs are compiled into intermediate form
• Intermediate form is validated for safety when

your program is first examined by the DTrace
kernel software

• The DTrace execution environment handles any
runtime errors

The D Language

• D does not use control-flow constructs such as if
statements and loops

• D program clauses are written as single, straight-
line statement lists that trace an optional, fixed
amount of data

• D can conditionally trace data and modify control
flow using logical expressions called predicates

• A predicate is tested at probe firing before
executing any statements

DTrace Performance

• DTrace is dynamic: probes are enabled only
when you need them

• No code is present for inactive probes
• There is no performance degradation when you

are not using DTrace
• When the dtrace command exits, all probes are

disabled and instrumentation removed
• The system is returned to its original state

DTrace Uses

• DTrace takes the power of multiple tools and
unifies them with one programmatically
accessible interface

• DTrace has features similar to the following:
– truss: tracing system calls, user functions
– ptrace: tracing library calls
– prex/tnf*: tracing kernel functions
– lockstat: profiling the kernel
– gdb: access to kernel/user memory

DTrace Uses

• DTrace combines system performance statistics,
debugging information, and execution analysis
into one tight package

• A real “Swiss army knife” for reverse engineers
• DTrace probes can monitor every part of the

system, giving “the big picture” or zooming in for a
closer look

• Can debug “transient” processes that other
debuggers cannot

Creating DTrace Scripts

• Dozens of ready-to-use scripts are included with
Sun’s DTraceToolkit; they can be used as
templates

• These scripts provide functions such as syscalls
by process, reads and writes by process, file
access, stack size, CPU time, memory r/w and
statistics

• Complex problems can often be diagnosed by a
single “one-liner” DTrace script

Example: Syscall Count

1
2
3
3
4

4309
6899

• System calls count by application:
dtrace -n 'syscall:::entry{@[execname] = count();}'.

Matched 427 probes
Syslogd
DirectoryService
Finder
TextMate
Cupsd
Ruby
vmware-vmx

Example: File Open Snoop

#!/usr/sbin/dtrace -s

syscall::open*:entry {
 printf("%s %s\n",
 execname,
 copyinstr(arg0));
}

Example: File Snoop Output

vmware-vmx /dev/urandom
Finder /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
iChat /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
Microsoft Power /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
nmblookup /System/Library/PrivateFrameworks/ByteRange ... ByteRangeLocking
nmblookup /dev/dtracehelper
nmblookup /dev/urandom
nmblookup /dev/autofs_nowait
Nmblookup /System/Library/PrivateFrameworks/ByteRange... ByteRangeLocking

 DTrace Lingo

• Probes are points of instrumentation
• Providers are logically grouped sets of probes
• Examples of providers include syscall, lockstat,

fbt, io, mib
• Predicates allow actions to be taken only when

certain conditions are met
• Actions are taken when a probe fires

DTrace Syntax

Generic D Script

Probe: provider:module:function:name
Predicate: /some condition that needs to happen/

{
Action: action1;
 action2; (ex: printf();)

}

DTRACE AND REVERSE
ENGINEERING (RE)

How Can We Use DTrace?

DTrace for RE

• DTrace is extremely versatile and has many
applications for RE

• It is very useful for understanding the way a
process works and interacts with the rest of the
system

• DTrace probes work in a manner very similar to
debugger “hooks”

• DTrace probes are useful because they can be
described generically and focused later

DTrace for RE

• Think of DTrace as a rapid development
framework for RE tasks and tools

• One of DTrace’s greatest assets is speed
• DTrace can instrument any process on the

system without starting or stopping it
• Complex operations can be understood with a

succinct one-line script
• You can refine your script as the process

continues to run

Helpful Features

DTrace gives us some valuable features for free:
• Control flow indicators
• Symbol resolution
• Call stack trace
• Function parameter values
• CPU register values
• Both in kernel space and user space!

Control Flow

 1 -> -[AIContentController finishSendContentObject:]
 1 -> -[AIAdium notificationCenter]
 1 <- -[AIAdium notificationCenter]
 1 -> -[AIContentController processAndSendContentObject:]
 1 -> -[AIContentController handleFileSendsForContentMessage:]
 1 <- -[AIContentController handleFileSendsForContentMessage:]
 1 -> -[AdiumOTREncryption willSendContentMessage:]
 1 -> policy_cb
 1 -> contactFromInfo
 1 -> -[AIAdium contactController]
 1 <- -[AIAdium contactController]
 1 -> accountFromAccountID

Symbol and Stack Trace

dyld`strcmp
 dyld`ImageLoaderMachO::findExportedSymbol(char
 dyld`ImageLoaderMachO::resolveUndefined(...
 dyld`ImageLoaderMachO::doBindLazySymbol(unsigned
 dyld`dyld::bindLazySymbol(mach_header const*, ...
 dyld`stub_binding_helper_interface2+0x15
 Ftpd`yylex+0x48
 Ftpd`yyparse+0x1d5
 ftpd`ftp_loop+0x7c
 ftpd`main+0xe46

Function Parameters

DTrace’s copyin* functions allow you to copy data
from the process space:

printf("arg0=%s", copyinstr(arg0))

Output:

 1 -> strcmp arg0=_isspecial_l

CPU Register Values

Uregs array allows access to reading CPU registers

printf(“EIP:%x”, uregs[R_EIP]);

Example:
EIP: 0xdeadbeef
EAX: 0xffffeae6
EBP: 0xdefacedd
ESP: 0x183f6000

Destructive Examples

#!/usr/sbin/dtrace -w -s
syscall::uname:entry { self->a = arg0; }

syscall::uname:return{
 copyoutstr(“Windows”, self->a, 257);
 copyoutstr(“PowerPC”, self->a+257, 257);
 copyoutstr(“2010.b17”, self->a+(257*2), 257);
 copyoutstr(“fud:2010-10-31”, self->a+(257*3), 257);
 copyoutstr(“PPC”, self->addr+(257*4), 257);
}

Adapted from: Jon Haslam, http://blogs.sun.com/jonh/date/20050321

Snooping

syscall::write: entry {
 self->a = arg0;
}
syscall::write: return {
 printf(“write: %s”,
 copyinstr(self->a);
}

Got Ideas?

Using DTrace:
• Monitor stack overflows
• Code coverage
• Fuzzer feedback
• Monitor heap overflows

DTrace vs. Debuggers

• Don’t think of DTrace as a debugger
• User mode and kernel mode debuggers allow you

to control execution and inspect process
information

• DTrace can instrument both the kernel and user
land applications at the same time

• To trace execution, debuggers use instructions to
pause and resume execution

• DTrace carries out parallel actions in the kernel
when a probe is hit

DTrace vs. Debuggers

• Traditional debuggers also affect the target
process’s memory layout. DTrace doesn’t

• DTrace does not directly perform exception
handling

• DTrace can halt process and transfer control to
external debugger

• Currently DTrace is not susceptible to traditional
anti-debugging techniques (isdebuggerpresent())

• However, Apple has implemented probe blocking
with use of the PT_ATTACH_DENY

DTrace vs. Tracers

• Truss, ltrace, and strace operate one process at a
time, with no system-wide capability

• Truss reduces application performance
• Truss stops threads through procfs, records the

arguments for the system call, and then restarts
the thread

• Valgrind™ is limited to a single process and only
runs on Linux

• Ptrace is much more efficient at instruction level
tracing but it is crippled on OS X

*Valgrind is Open Source/Free Software and is freely available under the GNU General Public License.

DTrace Limitations

• The D language does not have conditionals or
loops

• The output of many functions is to stdout (i.e.,
stack(), unstack())

• Lack of loops and use of stdout means DTrace is
not ideal for processing data

• We can fix this
• Cannot modify registers :’(epic sad time

DTrace Cautionaries

A few issues to be aware of:
• DTrace drops probes by design
• Tune options, narrow trace scope to improve

performance
• Some libraries and functions behave badly
• overflows can cause violations before function

return

RE with Ruby, DTrace and the
Mach API

RE:Trace & RE:dbg

RE:Trace

• RE:Trace combines Ruby with DTrace
• Ruby gives us the power of OOP, text processing,

iteration
• RE:Trace utilizes Ruby libdtrace bindings, written

by Chris Andrews
• Can be the glue which combines the power of

several existing Ruby RE frameworks (idarub,
librub, metasm, MSF3)

• RE:Trace is similar to programmatic frameworks
(pyDBG, noxDBG, immDBG)

• Includes script to dump and search memory

IdaRub

• Wraps IDA interface
• Ruby code is the client
• Server is IDA plugin
• Ruby glues it all together
• IdaRub was released by Spoonm at REcon 2006

ida.set_item_color(eip, 3000)

More info:
http://www.metasploit.com/users/spoonm/idarub/

RE:Trace and Exploit Dev

• Vulnerability analysis times can be dramatically
reduced with RE:Trace

• DTrace probes allow you to track data input flow
throughout a process to understand where and
why memory corruption took place

• Methods that cause stack and heap corruption
can be pinpointed using IDARub to integrate
IDA’s static analysis features

RE:Trace and Code Coverage

• DTrace can “hook” every function in a process
• This makes it perfect for implementing a “code

coverage aware” fuzzer
• Code coverage is useful for understanding what

areas are being fuzzed
• Current RE code coverage monitors are mostly

block based (PaiMei)
• We can use IDA to obtain block information or

check code coverage at the function or instruction
level

RE:dbg

• RE:dbg picks up where RE:Trace left off
• Programmatic debugger for mach debug API
• Partially exists on OS X in Python (see vtrace and

Charlie Miller’s pydbg port)

Integrated Ruby based RE Toolset:
• Tracing : RE:Trace
• Disassembly: IDArub
• Debugger reDBG

RE:dbg

• C code around Mach debugging API with Ruby
bindings

• Higher level Ruby class to make everything easy
• Symbol resolution
• Read and write memory
• Walk memory segments
• Modify memory permissions
• Set breakpoints
• Exception handling
• Interface with IDA (... metasm?)

iPhoto Format String Exploit

• iPhoto format string vuln is a good test for
automation

• URL handler bug: iphoto://%dd%n
• What we want to do is trace with RE:Trace until

we hit printf with arg1=%25 (URL encoded %n)
• Use idarub to get disassembly info from IDA
• Set a break on RET of the function with reDBG
• When breakpoint is hit, print out stack return

address (or whatever you overwrote) to make
sure the overflow was correct

RE:Trace/reDBG/IDArub

Progtext = “pid$target::__vfprintf:entry
/copyinstr(arg2) == "%25n"/ {stop();}”

t = Dtrace.new
p = t.createprocess([ARGV[0]])
prog = t.compile progtext
prog.execute
t.go
p.Continue
ida,sess = IdaRub.auto_client
Func = ida.Get_func(eip)
function[0..4].each do |line|
 if line == “ret”

Dbg = reDBG.new
dbg.attach(pid)

 dbg.setBreak(line)

RE:dbg ASLR

• ASLR analysis
• Start the application, lookup addresses for

application and library symbols
• Search through all memory for references to

those addresses
• Rinse and repeat

Can you find an address that is always relative to
an address of a useful function?

RE:dbg Soon!

If it’s not up in a week, bug us

MONITORING THE STACK
Writing a Stack Overflow Monitor with RE:Trace

Stack Overflow Monitoring

Programmatic control at EIP overflow time allows
you to:

• Pinpoint the vulnerable function
• Reconstruct the function call trace
• Halt the process before damage occurs (HIDS)
• Dump and search process memory
• Send feedback to fuzzer
• Attach debugger

Overflow Detection in One
Probe

#/usr/sbin/dtrace -w -s

pid$target:::return
 / uregs[R_EIP] == 0x41414141 / {
 printf("Don’t tase me bro!!!");
 stop()
 ...
}

First Approach

• Store RETURN value at function entry
• uregs[R_SP], NOT uregs[R_ESP]
• Compare EIP to saved RETURN value at function

return
• If different, there was an overflow

Simple enough, but false positives from:
• Tail call optimizations
• Functions without return probes

DTrace and Tail Calls

• Certain compiler optimizations mess with the
standard call/return control flow

• Tail calls are an example of such an optimization
• Two functions use the same stack frame, saves

resources, less instruction
• DTrace reports tail calls as a return then a call,

even though the return never happens
• EIP on return is not in the original calling function,

it is the entry to second
• Screws up simple stack monitor if not aware of it

New Approach

• Store RETURN value at function entry
• At function return, compare saved RETURN value

with CURRENT value
• Requires saving both the original return value and

its address in memory
• Fires when saved RETURN ! = current RETURN

and EIP = current RETURN

But Missing Return Probes???

Still trouble with functions that “never return”
• Some functions misbehave
• DTrace does not like function jump tables

(dyld_stub_*)
• Entry probe but no exit probe

Determining Missing Returns

Using DTrace – l flag
• List entry/exit probes for all functions
• Find functions with entry but no exit probe
Using DTrace aggregates
• Run application
• Aggregate on function entries and exits
• Look for mismatches
Exclude these functions with predicates
• / probefunc ! = “everybodyJump” /

Stack Overflow Video

Advanced Tracing

Diving in deeper:
• Instruction-level tracing
• Code coverage with IDA Pro and IdaRub
• Profiling idle and GUI code
• Feedback to the fuzzer, smart/evolutionary

fuzzing
• Conditional tracing based on function parameters

(reaching vulnerable code paths)

CODE COVERAGE
Instruction Tracing

Code Coverage Approach

Approach
• Instruction-level tracing using DTrace
• Must properly scope tracing
• Use IdaRub to send commands to IDA
• IDA colors instructions and code blocks
• Can be done in real time, if you can keep up

Tracing Instructions

• The last field of a probe is the offset in the
function

• Entry = offset 0
• Leave blank for every instruction
• Must map static global addresses to function

offset addresses

Print address of every instruction:
pid$target:a.out:: { print(“%d”, uregs[R_EIP]); }

Tracing Instructions (cont.)

• DTrace to print instructions
• Ruby-Dtrace to combined DTrace with Ruby
• Idarub and rublib to combined Ruby with IDA

Tracing libraries
• When tracing libraries, must know memory layout

of program
• vmmap on OS X will tell you
• Use offset to map runtime library EIPs to

decompiled libraries

Code Coverage with DTrace

Capabilities:
• Associate fuzz runs with code hit
• Visualize code paths
• Record number of times blocks were hit
• Compare idle traces to other traces

Limitations:
• Instruction tracing can be slow for some

applications
• Again, tuning and limiting scope

Coverage Visualization

Runtime Call Graphs

MONITORING THE HEAP
Writing a Heap Overflow Monitor

Hackin’ the Heap with RE:Trace

• The heap has become “the” major attack vector replacing
stack-based buffer overflows

• Relatively common unlink() write4 primitives are no longer
as “easy” to exploit on many platforms

• See Aitel and Waisman’s excellent “Debugging with ID”
presentation for more details

• As they point out, the key to the “new breed” of heap
exploit is understanding the heap layout and allocation
patterns

• ImmDBG can help you with this on Win32, and Gerrado
Richarte’s heap tracer can help you with visualization and
double free() on Solaris and Linux

Hackin’ the Heap with RE:Trace

• Many Different ways to use DTrace for heap
exploits

• Standard double free(), double malloc(), Leak
Detection

• Heap Visualization (Directed
Graphs/OpenGL/Instruments)

• Pesky off by one errors
• Spot app specific function pointers to overwrite
• Find heap overflows/corruptions that might not be

immediately dereference

OS X Heap Exploits

• Ltrace = Bonds on the Pirates, DTrace = Bonds
on the Giants

• Like Most BSD’s OS X does not store metadata
“in-band”

• Older techniques such as overwriting
initial_malloc_zones function pointers are dead

• You now have to overwrite app specific data
• DTrace already hooks functions to understand

heap layout and allocation patterns
• A slew of Heap Tools for OS X (vmmap,

MallocScribble, MallocCheckHeap, leaks)

Heap Visualization

Directed Graph of Heap Allocation Sizes:

RE:Trace Heap Smasher()

Refresher:
• When you malloc() on OS X, you are actually

calling the scalable zone allocator, which breaks
allocations into different zones by size:

Adapted from: OS X Internals A System Approach

RE:Trace Heap Smasher()

• In our heap smash detector, we must keep track
of four different “heaps”

• We do this by hooking malloc() calls and storing
them to ruby hashes with the pointer as the key
and the size allocated as the value

• We break the hashes into tiny, small, large, and
huge by allocation size

• We then hook all allocations and determine if the
pointer falls in the range of the previous
allocations. We can adjust the heap as memory is
free()’d or realloc’d()

RE:Trace Heap Smasher()

• By hooking C functions (strncpy, memcpy,
memmove, etc.) we can determine if they are
over-allocating to locations in the heap by looking
at the arguments and comparing to our heap
records

pid$target::strncpy:entry {
 self->sizer = arg2;
 printf("copyentry:dst=0x%p|src=0x%p;size=%i", arg0, arg1, arg2);
 self->sizer = 0;
}

RE:Trace Heap Smasher()

• We can check to see if the allocation happens in
a range we know about

• If it does, we know the size allocation, and we
can tell if a smash will occur

• Compared to our stack smash detector, we need
very few probes. A few dozen probes will hook all
the functions we need

• We can attach to a live process on and off without
disturbing it

RE:Trace Heap Smasher()

• We also keep a hash with the stack frame, which
called the original malloc()

• When an overflow is detected, we know:

– Who allocated it (stack frame)
– Who used it (function hook)
– Where the overflowed memory is
– How large the overflow was
– We can find out if its ever free()’d

RE:Trace Heap Smasher() Video

RE:Trace Heap Smasher()

Future additions:
• Graphviz/OpenGL Graphs
• There is a new version of Firefox which has probes in the

JavaScript library
• This would give us functionality to help create tools similar

to Alexander Sotirov’s HeapLib (Heap Fung Shui) for heap
manipulation generically

• Can trigger on high level object creation or action, then
trace for mallocs

• You tell me?

DTRACE DEFENSE
Using DTrace Defensively

Basic HIDS with DTrace

• Using Dtrace, you can profile your applications
basic behavior

• See Stefano Zanero’s BH 06 talk on Anomaly
detection through system call argument
analysis

• You should then be able to trace for anomalies
with predicates

• This is great for hacking up something to protect
a custom application (monitor for return-to-libc)

• Easy to create a rails interface for monitoring
with Ruby-DTrace

Basic HIDS with DTrace

• Problem: “I want to use QuickTime, but it’s got
holes”

• Solution: Make a DTrace script to call stop() when
weird stuff happens

• QuickTime probably never needs to call /bin/sh or
mprotect() on the stack to make it writable
(Houston we have a problem)

*QuickTime® is a registered trademark of Apple Inc. in the United States and/or other countries.

Basic HIDS with DTrace

#!/usr/sbin/dtrace -q -s

proc:::exec
 /execname == "QuickTime Player" &&
 args[0] == "/bin/sh"/
{

printf("\n%s Has been p0wned! It tried
to spawned %s\n”, execname, args[0])
}

HIDS Video

DTrace and Rootkits

• Check out Archim’s paper “B.D.S.M the Solaris
10 Way,” from the CCC Conference

• He created the SInAr rootkit for Solaris 10
• Describes a method for hiding a rootkit from

DTrace
• DTrace FBT (kernel) provider can spy on all

active kernel modules
• Should have the ability to detect rootkits, which

don’t explicitly hide from DTrace (SInAr is the
only one I could find)

• Expect more on this in the future

DTrace for Malware Analysis

• Very easy to hack up a script to analyze MalWare
• Example: Leopard DNS Changer (OSX.RSPlug.A)
• Why the heck is my video codec calling…

/usr/sbin/scutil
add ServerAddresses * $s1 $s2
set State:/Network/Service/$PSID/DNS

• You can monitor file I/O and syscalls with just two lines
• Scripts to do this now included with OS X by default
• Malware not hiding from DTrace yet
• BUT Apple made that a feature (yayyy!)

Hiding from DTrace

• In Jan. Core DTrace developer Adam Leventhal
discovered that Apple crippled DTrace for Leopard

• On OS X Your application can set the
“PT_ATTACH_DENY” flag to hide from DTrace just like
you can for GDB

• Leventhal used timing analysis to figure out they are
hiding iTunes™ from DTrace

• Very easy to patch in memory or with kext
• Landon Fuller released a kext to do this

http://landonf.bikemonkey.org/code/macosx/Leopard_PT_DENY_ATTACH.20080122.html

KERNEL DEBUGGING
OS X Kernel / Driver

BSoD

Panic Log

/Library/Logs/PanicReporter/
Fri Feb 8 09:30:02 2008
panic(cpu 1 caller 0x001A7BED): Kernel trap at 0x5c3f1cf9, type 14=page fault, registers:
CR0: 0x8001003b, CR2: 0x00000004, CR3: 0x013bd000, CR4: 0x00000660
EAX: 0x00000000, EBX: 0x08d74490, ECX: 0x08d74490, EDX: 0x00000000
CR2: 0x00000004, EBP: 0x7633fd98, ESI: 0xe00002ed, EDI: 0x07038200
EFL: 0x00010202, EIP: 0x5c3f1cf9, CS: 0x00000008, DS: 0x07030010
Error code: 0x00000000

Backtrace, Format - Frame : Return Address (4 potential args on stack)
0x7633fb98 : 0x12b0e1 (0x455670 0x7633fbcc 0x133238 0x0)
0x7633fbe8 : 0x1a7bed (0x45ea20 0x5c3f1cf9 0xe 0x45e1d4)
0x7633fcc8 : 0x19e517 (0x7633fce0 0x9086080 0x7633fd98 0x5c3f1cf9)
0x7633fcd8 : 0x5c3f1cf9 (0xe 0x48 0x10 0x7030010)
0x7633fd98 : 0x612470 (0x8d74490 0x0 0xe00002ed 0x0)
0x7633fdf8 : 0x88a2c7 (0x6eaf000 0x7038200 0xe00002ed 0x0)
0x7633fe68 : 0x88b7ec (0x6eaf000 0x7024240 0x0 0x0)
0x7633fed8 : 0x88b824 (0x6eaf000 0x0 0x0 0x135b0f)
0x7633fef8 : 0x88e705 (0x6eaf000 0x2 0x5366a0 0x6e4686c)
0x7633ff18 : 0x41d149 (0x6eaf000 0x6f21700 0x1 0x19ccc1)
0x7633ff68 : 0x41c2a6 (0x6f21700 0x6d77208 0x7633ff98 0x1368db)
0x7633ff98 : 0x41bf88 (0x6eaa500 0x6d95540 0x7633ffc8 0x7e56998)
0x7633ffc8 : 0x19e2ec (0x6eaa500 0x0 0x1a10b5 0x7726f20)
Backtrace terminated-invalid frame pointer 0
 Kernel loadable modules in backtrace (with dependencies):
 com.keyspan.iokit.usb.KeyspanUSAdriver(2.1)@0x5c3e2000->0x5c436fff
 dependency: com.apple.iokit.IOSerialFamily(9.1)@0x723000
 dependency: com.apple.iokit.IOUSBFamily(3.0.5)@0x60d000
 com.apple.driver.AppleUSBUHCI(3.0.5)@0x884000->0x891fff
 dependency: com.apple.iokit.IOPCIFamily(2.4)@0x63c000
 dependency: com.apple.iokit.IOUSBFamily(3.0.5)@0x60d000
 com.apple.iokit.IOUSBFamily(3.0.5)@0x60d000->0x634fff

BSD process name corresponding to current thread: kernel_task

Mac OS version:
9B18

Kernel version:
Darwin Kernel Version 9.1.0: Wed Oct 31 17:46:22 PDT 2007; root:xnu-1228.0.2~1/RELEASE_I386
System model name: MacBookPro3,1 (Mac-F42388C8)

Page Fault

... Kernel trap at 0x5c3f1cf9, type 14=page fault, registers:
CR0: 0x8001003b, CR2: 0x00000004, CR3: 0x013bd000, CR4:

0x00000660
...
 com.keyspan.iokit.usb.KeyspanUSAdriver(2.1)@0x5c3e2000-

>0x5c436fff

• Exception happens at 0x5c3f1cf9
• Keyspan driver is mapped to memory starting at 0x5c3e2000
• Drivers loaded page aligned so - 0x1000
• 0x5c3f1cf9 - 0x5c3e2000 - 0x1000 = 0xecf9

0xECF9

Registers from panic log:
...
CR0: 0x8001003b, CR2: 0x00000004, CR3: 0x013bd000, CR4: 0x00000660
EAX: 0x00000000, EBX: 0x08d74490, ECX: 0x08d74490, EDX: 0x00000000
...

Kernel Debugging

• All that was done without debugging
• What if we want to inspect memory?
• What if we get different errors and we aren’t sure why?
• Further debugging will be necessary

Kernel Debugging is a pain
• Require remote setup
• Need two hosts
• Export and import symbols
• Can DTrace help?

Kernel References

Apple Technical Note TN2063:
Understanding and Debugging Kernel Panics

Apple Technical Note TN2118:
Kernel Core Dumps

Hello Debugger: Debugging a Device Driver With GDB

http://developer.apple.com/documentation/Darwin/Conceptual/KEX
TConcept/KEXTConceptDebugger/hello_debugger.html

Uninformed volume 8 article 4 by David Maynor
http://www.uninformed.org/?v=8&a=4

HIGHER LEVEL TRACING
Leveraging Custom Application Probes

Application Probes

• Represent a more abstract action
• Browser example: Page Load, build DOM, DNS

request
• Helps for gathering performance metrics
• Also tracing VM languages like Java, Python, Ruby
• Largely still in the works

Tracing SQL Calls

• fuzz inputs
• hook the database

#!/usr/sbin/dtrace –s

pid$target:mysqld:*dispatch_command*:entry {
 printf(”%Y %s\n”, walltimestamp, copyinstr(arg2))
}

Example:

2008 Jun 15 01:02:35 INSERT INTO router (prefix,
lladdr, mac, trusted, address) VALUES
('face<script>', 'face''', 'face;--', 1, 'face"')

Future Work

• Automated feedback and integration with fuzzers
• More experimenting with Kernel tracing
• Improved overflow monitoring
• Memory allocation analysis libraries (will help port

Sotirov’s HeapLib to ActiveX, DHTML version or
other browsers/OSes)

• Garbage collection behavior analysis
• More on utilizing application-specific probes

(probes for JS in browsers, MySQL probes, ...)
• New Probes: Network providers, IP send & recv

Your own ideas!

Conclusion

DTrace can:
• Collect an unprecedented range of data
• Collect very specific measurements
• Scope can be very broad or very precise

Applied to Reverse Engineering:
• Allows researchers to pinpoint specific situation (overflows)
• Or to understand general behavior (heap growth)

RETRACE + REDBG + IDA!

Thank You!

Tiller Beauchamp
SAIC
Tiller.L.Beauchamp@SAIC.com

David Weston
Microsoft
daweston@microsoft.com

See the RE:Trace framework for implementation:

(redbg coming soon!)

http://www.poppopret.org/

Questions?

	RE:Trace – Applied Reverse Engineering on OS X
	DTRACE BACKGROUND
	DTrace Background
	DTrace Overview
	DTrace Architecture
	The D Language
	Slide 7
	DTrace Performance
	DTrace Uses
	Slide 10
	Creating DTrace Scripts
	Example: Syscall Count
	Example: File Open Snoop
	Example: File Snoop Output
	 DTrace Lingo
	DTrace Syntax
	DTRACE AND REVERSE ENGINEERING (RE)
	DTrace for RE
	Slide 19
	Helpful Features
	Control Flow
	Symbol and Stack Trace
	Function Parameters
	CPU Register Values
	Destructive Examples
	Snooping
	Got Ideas?
	DTrace vs. Debuggers
	Slide 29
	DTrace vs. Tracers
	DTrace Limitations
	DTrace Cautionaries
	RE with Ruby, DTrace and the Mach API
	RE:Trace
	IdaRub
	RE:Trace and Exploit Dev
	RE:Trace and Code Coverage
	RE:dbg
	Slide 39
	iPhoto Format String Exploit
	RE:Trace/reDBG/IDArub
	RE:dbg ASLR
	RE:dbg Soon!
	MONITORING THE STACK
	Stack Overflow Monitoring
	Overflow Detection in One Probe
	First Approach
	DTrace and Tail Calls
	New Approach
	But Missing Return Probes???
	Determining Missing Returns
	Stack Overflow Video
	Advanced Tracing
	CODE COVERAGE
	Code Coverage Approach
	Tracing Instructions
	Tracing Instructions (cont.)
	Code Coverage with DTrace
	Coverage Visualization
	Runtime Call Graphs
	MONITORING THE HEAP
	Hackin’ the Heap with RE:Trace
	Slide 63
	OS X Heap Exploits
	Heap Visualization
	RE:Trace Heap Smasher()
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	RE:Trace Heap Smasher() Video
	Slide 72
	DTRACE DEFENSE
	Basic HIDS with DTrace
	Slide 75
	Slide 76
	HIDS Video
	DTrace and Rootkits
	DTrace for Malware Analysis
	Hiding from DTrace
	KERNEL DEBUGGING
	BSoD
	Panic Log
	Page Fault
	0xECF9
	Kernel Debugging
	Kernel References
	HIGHER LEVEL TRACING
	Application Probes
	Tracing SQL Calls
	Future Work
	Conclusion
	Thank You!

