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DTRACE BACKGROUND
What Is DTrace™?

*Dtrace was created by Sun Microsystems, Inc. and released under the Common Development and Distribution 
License (CDDL), a free software license based on the Mozilla Public License (MPL).



DTrace Background

    
• Kernel-based dynamic tracing framework
• Created by Sun Microsystems
• First released with Solaris™ 10 operating System
• Now included with Apple OS X Leopard, QNX
• June 10th, 2008, committed to CURRENT branch 

of FreeBSD 7, Will be in 8 STABLE (John Birrell)
• OpenBSD, NetBSD, Linux?

*Solaris™ is a trademark of Sun Microsystems, Inc. in the United States and/or other countries.



DTrace Overview 

• DTrace is a framework for performance 
observability and debugging in real time

• Tracing is made possible by thousands of 
“probes” placed “on the fly” throughout the system

• Probes are points of instrumentation in the kernel
• When a program execution passes one of these 

points, the probe that enabled it is said to have 
fired

• DTrace can bind a set of actions to each probe



DTrace Architecture

Source: Solaris Dynamic Tracing Guide



The D Language

• D is an interpreted, block-structured language
• D syntax is a subset of C
• D programs are compiled into intermediate form
• Intermediate form is validated for safety when 

your program is first examined by the DTrace 
kernel software

• The DTrace execution environment handles any 
runtime errors



The D Language

• D does not use control-flow constructs such as if 
statements and loops

• D program clauses are written as single, straight-
line statement lists that trace an optional, fixed 
amount of data

• D can conditionally trace data and modify control 
flow using logical expressions called predicates

• A predicate is tested at probe firing before 
executing any statements



DTrace Performance

• DTrace is dynamic: probes are enabled only 
when you need them

• No code is present for inactive probes
• There is no performance degradation when you 

are not using DTrace
• When the dtrace command exits, all probes are 

disabled and instrumentation removed 
• The system is returned to its original state
 



DTrace Uses

• DTrace takes the power of multiple tools and 
unifies them with one programmatically 
accessible interface 

• DTrace has features similar to the following:
– truss: tracing system calls, user functions
– ptrace: tracing library calls 
– prex/tnf*: tracing kernel functions 
– lockstat: profiling the kernel 
– gdb: access to kernel/user memory



DTrace Uses

• DTrace combines system performance statistics, 
debugging information, and execution analysis 
into one tight package

• A real “Swiss army knife” for reverse engineers
• DTrace probes can monitor every part of the 

system, giving “the big picture” or zooming in for a 
closer look

• Can debug “transient” processes that other 
debuggers cannot



Creating DTrace Scripts

• Dozens of ready-to-use scripts are included with 
Sun’s DTraceToolkit; they can be used as 
templates

• These scripts provide functions such as syscalls 
by process, reads and writes by process, file 
access, stack size, CPU time, memory r/w and 
statistics

• Complex problems can often be diagnosed by a 
single “one-liner” DTrace script



Example: Syscall Count

1
2
3
3
4

4309
6899

• System calls count by application:
dtrace -n 'syscall:::entry{@[execname] = count();}'.

Matched 427 probes
Syslogd
DirectoryService
Finder
TextMate
Cupsd
Ruby
vmware-vmx



Example: File Open Snoop

#!/usr/sbin/dtrace -s

syscall::open*:entry { 
  printf("%s %s\n",
          execname,
          copyinstr(arg0));
}



Example: File Snoop Output

vmware-vmx /dev/urandom
Finder /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
iChat /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
Microsoft Power /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
nmblookup /System/Library/PrivateFrameworks/ByteRange ... ByteRangeLocking
nmblookup /dev/dtracehelper
nmblookup /dev/urandom
nmblookup /dev/autofs_nowait
Nmblookup /System/Library/PrivateFrameworks/ByteRange... ByteRangeLocking



 DTrace Lingo

• Probes are points of instrumentation
• Providers are logically grouped sets of probes
• Examples of providers include syscall, lockstat, 

fbt, io, mib
• Predicates allow actions to be taken only when 

certain conditions are met
•  Actions are taken when a probe fires 



DTrace Syntax

Generic D Script

Probe:      provider:module:function:name
Predicate:    /some condition that needs to happen/

{
Action: action1;
 action2; (ex: printf(); )

}



DTRACE AND REVERSE 
ENGINEERING (RE)

How Can We Use DTrace?



DTrace for RE

• DTrace is extremely versatile and has many 
applications for RE

• It is very useful for understanding the way a 
process works and interacts with the rest of the 
system

• DTrace probes work in a manner very similar to 
debugger “hooks”

• DTrace probes are useful because they can be 
described generically and focused later



DTrace for RE

• Think of DTrace as a rapid development 
framework for RE tasks and tools

• One of DTrace’s greatest assets is speed
• DTrace can instrument any process on the 

system without starting or stopping it
• Complex operations can be understood with a 

succinct one-line script
• You can refine your script as the process 

continues to run



Helpful Features

DTrace gives us some valuable features for free:
• Control flow indicators
• Symbol resolution
• Call stack trace
• Function parameter values
• CPU register values
• Both in kernel space and user space!



Control Flow

  1        -> -[AIContentController finishSendContentObject:] 
  1          -> -[AIAdium notificationCenter] 
  1          <- -[AIAdium notificationCenter] 
  1          -> -[AIContentController processAndSendContentObject:] 
  1            -> -[AIContentController handleFileSendsForContentMessage:] 
  1            <- -[AIContentController handleFileSendsForContentMessage:] 
  1            -> -[AdiumOTREncryption willSendContentMessage:] 
  1              -> policy_cb                 
  1                -> contactFromInfo         
  1                  -> -[AIAdium contactController] 
  1                  <- -[AIAdium contactController] 
  1                  -> accountFromAccountID  



Symbol and Stack Trace

dyld`strcmp
  dyld`ImageLoaderMachO::findExportedSymbol(char
  dyld`ImageLoaderMachO::resolveUndefined(...  
  dyld`ImageLoaderMachO::doBindLazySymbol(unsigned
  dyld`dyld::bindLazySymbol(mach_header const*, ...
  dyld`stub_binding_helper_interface2+0x15
  Ftpd`yylex+0x48
  Ftpd`yyparse+0x1d5
  ftpd`ftp_loop+0x7c
  ftpd`main+0xe46



Function Parameters

DTrace’s copyin* functions allow you to copy data 
from the process space:

printf("arg0=%s", copyinstr( arg0 ))

Output:

 1  -> strcmp    arg0=_isspecial_l



CPU Register Values

Uregs array allows access to reading CPU registers

printf(“EIP:%x”, uregs[R_EIP]);

Example:
EIP: 0xdeadbeef
EAX: 0xffffeae6
EBP: 0xdefacedd
ESP: 0x183f6000



Destructive Examples

#!/usr/sbin/dtrace -w -s
syscall::uname:entry { self->a = arg0; }

syscall::uname:return{
        copyoutstr(“Windows”, self->a, 257);
        copyoutstr(“PowerPC”, self->a+257, 257);
        copyoutstr(“2010.b17”, self->a+(257*2), 257);
        copyoutstr(“fud:2010-10-31”, self->a+(257*3), 257);
        copyoutstr(“PPC”, self->addr+(257*4), 257);
}

Adapted from: Jon Haslam, http://blogs.sun.com/jonh/date/20050321



Snooping

syscall::write: entry { 
   self->a = arg0; 
}
syscall::write: return { 
   printf(“write: %s”,
   copyinstr(self->a); 
}



Got Ideas?

Using DTrace:
• Monitor stack overflows
• Code coverage
• Fuzzer feedback
• Monitor heap overflows



DTrace vs. Debuggers

• Don’t think of DTrace as a debugger
• User mode and kernel mode debuggers allow you 

to control execution and inspect process 
information 

• DTrace can instrument both the kernel and user 
land applications at the same time

• To trace execution, debuggers use instructions to 
pause and resume execution

• DTrace carries out parallel actions in the kernel 
when a probe is hit 



DTrace vs. Debuggers

• Traditional debuggers also affect the target 
process’s memory layout.  DTrace doesn’t

• DTrace does not directly perform exception 
handling

• DTrace can halt process and transfer control to 
external debugger

• Currently DTrace is not susceptible to traditional 
anti-debugging techniques (isdebuggerpresent())

• However, Apple has implemented probe blocking 
with use of the PT_ATTACH_DENY



DTrace vs. Tracers

• Truss, ltrace, and strace operate one process at a 
time, with no system-wide capability

• Truss reduces application performance
• Truss stops threads through procfs, records the 

arguments for the system call, and then restarts 
the thread

• Valgrind™ is limited to a single process and only 
runs on Linux

• Ptrace is much more efficient at instruction level 
tracing but it is crippled on OS X 

*Valgrind is Open Source/Free Software and is freely available under the GNU General Public License.



DTrace Limitations

• The D language does not have conditionals or 
loops

• The output of many functions is to stdout (i.e., 
stack(), unstack())

• Lack of loops and use of stdout means DTrace is 
not ideal for processing data

• We can fix this
• Cannot modify registers :’(  epic sad time



DTrace Cautionaries

A few issues to be aware of:
• DTrace drops probes by design
• Tune options, narrow trace scope to improve 

performance
• Some libraries and functions behave badly
• overflows can cause violations before function 

return



RE with Ruby, DTrace and the 
Mach API

RE:Trace & RE:dbg



RE:Trace

• RE:Trace combines Ruby with DTrace
• Ruby gives us the power of OOP, text processing, 

iteration
• RE:Trace utilizes Ruby libdtrace bindings, written 

by Chris Andrews
• Can be the glue which combines the power of 

several existing Ruby RE frameworks (idarub, 
librub, metasm, MSF3) 

• RE:Trace is similar to programmatic frameworks 
(pyDBG, noxDBG, immDBG)

• Includes script to dump and search memory



IdaRub

• Wraps IDA interface
• Ruby code is the client
• Server is IDA plugin
• Ruby glues it all together
• IdaRub was released by Spoonm at REcon 2006

ida.set_item_color(eip, 3000)

More info: 
http://www.metasploit.com/users/spoonm/idarub/



RE:Trace and Exploit Dev

• Vulnerability analysis times can be dramatically 
reduced with RE:Trace

• DTrace probes allow you to track data input flow 
throughout a process to understand where and 
why memory corruption took place

• Methods that cause stack and heap corruption 
can be pinpointed using IDARub to integrate 
IDA’s static analysis features



RE:Trace and Code Coverage

• DTrace can “hook” every function in a process
• This makes it perfect for implementing a “code 

coverage aware” fuzzer
• Code coverage is useful for understanding what 

areas are being fuzzed
• Current RE code coverage monitors are mostly 

block based (PaiMei)
• We can use IDA to obtain block information or 

check code coverage at the function or instruction 
level



RE:dbg

• RE:dbg picks up where RE:Trace left off
• Programmatic debugger for mach debug API
• Partially exists on OS X in Python (see vtrace and 

Charlie Miller’s pydbg port)

Integrated Ruby based RE Toolset:
• Tracing : RE:Trace
• Disassembly:  IDArub
• Debugger reDBG



RE:dbg

• C code around Mach debugging API with Ruby 
bindings

• Higher level Ruby class to make everything easy
• Symbol resolution
• Read and write memory
• Walk memory segments
• Modify memory permissions
• Set breakpoints
• Exception handling
• Interface with IDA ( ... metasm?)



iPhoto Format String Exploit

• iPhoto format string vuln is a good test for 
automation

• URL handler bug: iphoto://%dd%n
• What we want to do is trace with RE:Trace until 

we hit printf with arg1=%25 (URL encoded %n)
• Use idarub to get disassembly info from IDA
• Set a break on RET of the function with reDBG 
• When breakpoint is hit, print out stack return 

address (or whatever you overwrote) to make 
sure the overflow was correct



RE:Trace/reDBG/IDArub

Progtext = “pid$target::__vfprintf:entry 
/copyinstr(arg2) == "%25n"/ {stop();}”

t = Dtrace.new
p = t.createprocess([ARGV[0]])
prog = t.compile progtext
prog.execute
t.go
p.Continue
ida,sess = IdaRub.auto_client
Func = ida.Get_func(eip)
function[0..4].each  do |line| 
  if line == “ret”

Dbg = reDBG.new
dbg.attach(pid)

       dbg.setBreak(line)



RE:dbg ASLR

• ASLR analysis
• Start the application, lookup addresses for 

application and library symbols
• Search through all memory for references to 

those addresses
• Rinse and repeat

Can you find an address that is always relative to 
an address of a useful function?



RE:dbg Soon!

If it’s not up in a week, bug us



MONITORING THE STACK
Writing a Stack Overflow Monitor with RE:Trace



Stack Overflow Monitoring

Programmatic control at EIP overflow time allows 
you to:

• Pinpoint the vulnerable function
• Reconstruct the function call trace
• Halt the process before damage occurs (HIDS)
• Dump and search process memory
• Send feedback to fuzzer
• Attach debugger



Overflow Detection in One 
Probe

#/usr/sbin/dtrace -w -s

pid$target:::return 
   / uregs[R_EIP] == 0x41414141 / {
   printf("Don’t tase me bro!!!");
          stop()
          ...
}



First Approach

• Store RETURN value at function entry
• uregs[R_SP], NOT uregs[R_ESP]
• Compare EIP to saved RETURN value at function 

return
• If different, there was an overflow

Simple enough, but false positives from:
• Tail call optimizations
• Functions without return probes



DTrace and Tail Calls

• Certain compiler optimizations mess with the 
standard call/return control flow

• Tail calls are an example of such an optimization
• Two functions use the same stack frame, saves 

resources, less instruction
• DTrace reports tail calls as a return then a call, 

even though the return never happens
• EIP on return is not in the original calling function, 

it is the entry to second
• Screws up simple stack monitor if not aware of it 



New Approach

• Store RETURN value at function entry
• At function return, compare saved RETURN value 

with CURRENT value
• Requires saving both the original return value and 

its address in memory
• Fires when saved RETURN ! = current RETURN 

and EIP = current RETURN



But Missing Return Probes???

Still trouble with functions that “never return”
• Some functions misbehave
• DTrace does not like function jump tables 

(dyld_stub_*)
• Entry probe but no exit probe



Determining Missing Returns

Using DTrace – l flag
•       List entry/exit probes for all functions
•       Find functions with entry but no exit probe
Using DTrace aggregates
• Run application
• Aggregate on function entries and exits
• Look for mismatches
Exclude these functions with predicates
• / probefunc ! = “everybodyJump” / 



Stack Overflow Video



Advanced Tracing

Diving in deeper:
• Instruction-level tracing
• Code coverage with IDA Pro and IdaRub
• Profiling idle and GUI code
• Feedback to the fuzzer, smart/evolutionary 

fuzzing
• Conditional tracing based on function parameters 

(reaching vulnerable code paths)



CODE COVERAGE
Instruction Tracing



Code Coverage Approach

Approach
• Instruction-level tracing using DTrace
• Must properly scope tracing
• Use IdaRub to send commands to IDA
• IDA colors instructions and code blocks
• Can be done in real time, if you can keep up



Tracing Instructions

• The last field of a probe is the offset in the 
function

• Entry = offset 0
• Leave blank for every instruction
• Must map static global addresses to function 

offset addresses

Print address of every instruction:
pid$target:a.out:: { print(“%d”, uregs[R_EIP]); }



Tracing Instructions (cont.)

• DTrace to print instructions
• Ruby-Dtrace to combined DTrace with Ruby
• Idarub and rublib to combined Ruby with IDA

Tracing libraries
• When tracing libraries, must know memory layout 

of program
• vmmap on OS X will tell you
• Use offset to map runtime library EIPs to 

decompiled libraries



Code Coverage with DTrace

Capabilities:
• Associate fuzz runs with code hit
• Visualize code paths
• Record number of times blocks were hit
• Compare idle traces to other traces

Limitations:
• Instruction tracing can be slow for some 

applications
• Again, tuning and limiting scope



Coverage Visualization



Runtime Call Graphs



MONITORING THE HEAP
Writing a Heap Overflow Monitor



Hackin’ the Heap with RE:Trace

• The heap has become “the” major attack vector replacing 
stack-based buffer overflows

• Relatively common unlink() write4 primitives are no longer 
as “easy” to exploit on many platforms

• See Aitel and Waisman’s excellent “Debugging with ID” 
presentation for more details

• As they point out, the key to the “new breed” of heap 
exploit is understanding the heap layout and allocation 
patterns

• ImmDBG can help you with this on Win32, and Gerrado 
Richarte’s heap tracer can help you with visualization and  
double free() on Solaris and Linux



Hackin’ the Heap with RE:Trace

• Many Different ways to use DTrace for heap 
exploits

• Standard double free(), double malloc(), Leak 
Detection

• Heap Visualization (Directed 
Graphs/OpenGL/Instruments)

• Pesky off by one errors
• Spot app specific function pointers to overwrite
• Find heap overflows/corruptions that might not be 

immediately dereference



OS X Heap Exploits

• Ltrace = Bonds on the Pirates, DTrace = Bonds 
on the Giants

• Like Most BSD’s OS X does not store metadata 
“in-band”

• Older techniques such as overwriting 
initial_malloc_zones function pointers are dead

• You now have to overwrite app specific data
• DTrace already hooks functions  to understand 

heap layout and allocation patterns
• A slew of Heap Tools for OS X (vmmap, 

MallocScribble, MallocCheckHeap, leaks)



Heap Visualization

Directed Graph of Heap Allocation Sizes:



RE:Trace Heap Smasher()

Refresher:
• When you malloc() on OS X, you are actually 

calling the scalable zone allocator, which breaks 
allocations into different zones by size:

Adapted from: OS X Internals A System Approach



RE:Trace Heap Smasher()

• In our heap smash detector, we must keep track 
of four different “heaps”

• We do this by hooking malloc() calls and storing 
them to ruby hashes with the pointer as the key 
and the size allocated as the value

• We break the hashes into tiny, small, large, and 
huge by allocation size

• We then hook all allocations and determine if the 
pointer falls in the range of the previous 
allocations. We can adjust the heap as memory is 
free()’d or realloc’d()



RE:Trace Heap Smasher()

• By hooking C functions (strncpy, memcpy, 
memmove, etc.) we can determine if they are 
over-allocating to locations in the heap by looking 
at the arguments and comparing to our heap 
records

pid$target::strncpy:entry {
   self->sizer = arg2;
   printf("copyentry:dst=0x%p|src=0x%p;size=%i", arg0, arg1, arg2);
   self->sizer = 0;
}



RE:Trace Heap Smasher()

• We can check to see if the allocation happens in 
a range we know about

•  If it does, we know the size allocation, and we 
can tell if a smash will occur

• Compared to our stack smash detector, we need 
very few probes.  A few dozen probes will hook all 
the functions we need

• We can attach to a live process on and off without 
disturbing it



RE:Trace Heap Smasher()

• We also keep a hash with the stack frame, which 
called the original malloc()

• When an overflow is detected, we know:

– Who allocated it (stack frame)
– Who used it (function hook)
– Where the overflowed memory is
– How large the overflow was
– We can find out if its ever free()’d



RE:Trace Heap Smasher() Video



RE:Trace Heap Smasher()

Future additions:
• Graphviz/OpenGL Graphs
• There is a new version of Firefox which has probes in the 

JavaScript library
• This would give us functionality to help create tools similar 

to Alexander Sotirov’s HeapLib (Heap Fung Shui) for heap 
manipulation generically

• Can trigger on high level object creation or action, then 
trace for mallocs 

• You tell me?



DTRACE DEFENSE
Using DTrace Defensively



Basic HIDS with DTrace

• Using Dtrace, you can profile your applications 
basic behavior

• See Stefano Zanero’s BH 06 talk on  Anomaly 
detection through system call argument 
analysis

• You should then be able to trace for anomalies 
with predicates

• This is great for hacking up something to protect 
a custom application (monitor for return-to-libc)

• Easy to create a rails interface  for monitoring 
with Ruby-DTrace



Basic HIDS with DTrace

• Problem:  “I want to use QuickTime, but it’s got 
holes”

• Solution: Make a DTrace script to call stop() when 
weird stuff happens

• QuickTime probably never needs to call /bin/sh or 
mprotect() on the stack to make it writable 
(Houston we have a problem)

*QuickTime® is a registered trademark of Apple Inc. in the United States and/or other countries.



Basic HIDS with DTrace

#!/usr/sbin/dtrace  -q -s

proc:::exec
     /execname == "QuickTime Player" &&
     args[0] == "/bin/sh"/ 
{

printf("\n%s Has been p0wned! It tried 
to  spawned %s\n”, execname, args[0])
}



HIDS Video



DTrace and Rootkits

• Check out Archim’s paper “B.D.S.M the Solaris 
10 Way,” from the CCC Conference

• He created the SInAr rootkit for Solaris 10
• Describes a method for hiding a rootkit from 

DTrace
• DTrace FBT (kernel) provider can spy on all 

active kernel modules
• Should have the ability to detect rootkits, which 

don’t explicitly hide from DTrace (SInAr is the 
only one I could find)

• Expect more on this in the future



DTrace for Malware Analysis

• Very easy to hack up a script to analyze MalWare
• Example: Leopard DNS Changer (OSX.RSPlug.A )
• Why the heck is my video codec calling…

/usr/sbin/scutil
add ServerAddresses * $s1 $s2
set State:/Network/Service/$PSID/DNS

• You can monitor file I/O and syscalls with just two lines
• Scripts to do this now included with OS X by default
• Malware not hiding from DTrace yet
• BUT Apple made that a feature (yayyy!)



Hiding from DTrace 

• In Jan. Core DTrace developer Adam Leventhal 
discovered that Apple crippled DTrace for Leopard

• On OS X Your application can set the 
“PT_ATTACH_DENY” flag to hide from DTrace just like 
you can for GDB

• Leventhal used timing analysis to figure out they are 
hiding iTunes™ from DTrace

• Very easy to patch in memory or with kext
• Landon Fuller released a kext to do this

http://landonf.bikemonkey.org/code/macosx/Leopard_PT_DENY_ATTACH.20080122.html



KERNEL DEBUGGING
OS X Kernel / Driver



BSoD



Panic Log

/Library/Logs/PanicReporter/
Fri Feb  8 09:30:02 2008
panic(cpu 1 caller 0x001A7BED): Kernel trap at 0x5c3f1cf9, type 14=page fault, registers:
CR0: 0x8001003b, CR2: 0x00000004, CR3: 0x013bd000, CR4: 0x00000660
EAX: 0x00000000, EBX: 0x08d74490, ECX: 0x08d74490, EDX: 0x00000000
CR2: 0x00000004, EBP: 0x7633fd98, ESI: 0xe00002ed, EDI: 0x07038200
EFL: 0x00010202, EIP: 0x5c3f1cf9, CS:  0x00000008, DS:  0x07030010
Error code: 0x00000000

Backtrace, Format - Frame : Return Address (4 potential args on stack) 
0x7633fb98 : 0x12b0e1 (0x455670 0x7633fbcc 0x133238 0x0) 
0x7633fbe8 : 0x1a7bed (0x45ea20 0x5c3f1cf9 0xe 0x45e1d4) 
0x7633fcc8 : 0x19e517 (0x7633fce0 0x9086080 0x7633fd98 0x5c3f1cf9) 
0x7633fcd8 : 0x5c3f1cf9 (0xe 0x48 0x10 0x7030010) 
0x7633fd98 : 0x612470 (0x8d74490 0x0 0xe00002ed 0x0) 
0x7633fdf8 : 0x88a2c7 (0x6eaf000 0x7038200 0xe00002ed 0x0) 
0x7633fe68 : 0x88b7ec (0x6eaf000 0x7024240 0x0 0x0) 
0x7633fed8 : 0x88b824 (0x6eaf000 0x0 0x0 0x135b0f) 
0x7633fef8 : 0x88e705 (0x6eaf000 0x2 0x5366a0 0x6e4686c) 
0x7633ff18 : 0x41d149 (0x6eaf000 0x6f21700 0x1 0x19ccc1) 
0x7633ff68 : 0x41c2a6 (0x6f21700 0x6d77208 0x7633ff98 0x1368db) 
0x7633ff98 : 0x41bf88 (0x6eaa500 0x6d95540 0x7633ffc8 0x7e56998) 
0x7633ffc8 : 0x19e2ec (0x6eaa500 0x0 0x1a10b5 0x7726f20) 
Backtrace terminated-invalid frame pointer 0
      Kernel loadable modules in backtrace (with dependencies):
         com.keyspan.iokit.usb.KeyspanUSAdriver(2.1)@0x5c3e2000->0x5c436fff
            dependency: com.apple.iokit.IOSerialFamily(9.1)@0x723000
            dependency: com.apple.iokit.IOUSBFamily(3.0.5)@0x60d000
         com.apple.driver.AppleUSBUHCI(3.0.5)@0x884000->0x891fff
            dependency: com.apple.iokit.IOPCIFamily(2.4)@0x63c000
            dependency: com.apple.iokit.IOUSBFamily(3.0.5)@0x60d000
         com.apple.iokit.IOUSBFamily(3.0.5)@0x60d000->0x634fff

BSD process name corresponding to current thread: kernel_task

Mac OS version:
9B18

Kernel version:
Darwin Kernel Version 9.1.0: Wed Oct 31 17:46:22 PDT 2007; root:xnu-1228.0.2~1/RELEASE_I386
System model name: MacBookPro3,1 (Mac-F42388C8)



Page Fault

... Kernel trap at 0x5c3f1cf9, type 14=page fault, registers:
CR0: 0x8001003b, CR2: 0x00000004, CR3: 0x013bd000, CR4: 

0x00000660
...
 com.keyspan.iokit.usb.KeyspanUSAdriver(2.1)@0x5c3e2000-

>0x5c436fff

• Exception happens at 0x5c3f1cf9
• Keyspan driver is mapped to memory starting at 0x5c3e2000
• Drivers loaded page aligned so - 0x1000
• 0x5c3f1cf9 - 0x5c3e2000 - 0x1000 =  0xecf9



0xECF9

Registers from panic log:
...
CR0: 0x8001003b, CR2: 0x00000004, CR3: 0x013bd000, CR4: 0x00000660
EAX: 0x00000000, EBX: 0x08d74490, ECX: 0x08d74490, EDX: 0x00000000
...



Kernel Debugging

• All that was done without debugging
• What if we want to inspect memory?
• What if we get different errors and we aren’t sure why?
• Further debugging will be necessary

Kernel Debugging is a pain
• Require remote setup
• Need two hosts
• Export and import symbols
• Can DTrace help?



Kernel References

Apple Technical Note TN2063: 
Understanding and Debugging Kernel Panics

Apple Technical Note TN2118: 
Kernel Core Dumps

Hello Debugger: Debugging a Device Driver With GDB

http://developer.apple.com/documentation/Darwin/Conceptual/KEX
TConcept/KEXTConceptDebugger/hello_debugger.html

Uninformed volume 8 article 4 by David Maynor
http://www.uninformed.org/?v=8&a=4



HIGHER LEVEL TRACING
Leveraging Custom Application Probes



Application Probes

• Represent a more abstract action
• Browser example: Page Load, build DOM, DNS 

request
• Helps for gathering performance metrics
• Also tracing VM languages like Java, Python, Ruby
• Largely still in the works



Tracing SQL Calls

• fuzz inputs
• hook the database

#!/usr/sbin/dtrace –s 

pid$target:mysqld:*dispatch_command*:entry {
 printf(”%Y %s\n”, walltimestamp, copyinstr(arg2)) 
} 

Example:

2008 Jun 15 01:02:35 INSERT INTO router (prefix, 
lladdr, mac, trusted, address) VALUES 
('face<script>', 'face''', 'face;--', 1, 'face"')



Future Work

• Automated feedback and integration with fuzzers
• More experimenting with Kernel tracing
• Improved overflow monitoring
• Memory allocation analysis libraries (will help port 

Sotirov’s HeapLib to ActiveX, DHTML version or 
other browsers/OSes)

• Garbage collection behavior analysis
• More on utilizing application-specific probes 

(probes for JS in browsers, MySQL probes, ...)
• New Probes: Network providers, IP send & recv

Your own ideas!



Conclusion

DTrace can:
• Collect an unprecedented range of data
• Collect very specific measurements
• Scope can be very broad or very precise

Applied to Reverse Engineering:
• Allows researchers to pinpoint specific situation (overflows) 
• Or to understand general behavior (heap growth)

RETRACE + REDBG + IDA!     



Thank You!

Tiller Beauchamp
SAIC
Tiller.L.Beauchamp@SAIC.com

David Weston
Microsoft
daweston@microsoft.com

See the RE:Trace framework for implementation:

( redbg coming soon! )

http://www.poppopret.org/

Questions?
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