
Toasterkit - A NetBSD Rootkit
Anthony Martinez

Thomas Bowen

http://mrtheplague.net/toasterkit/



Toasterkit - A NetBSD Rootkit

1. Who we are

2. What is NetBSD? Why NetBSD?

3. Rootkits on NetBSD

4. Architectural Overview

5. Our contributions

6. Demo

7. Protection

8. Prevention



Who we are - Anthony Martinez

Anthony is a system administrator for the New Mexico
Institute of Mining and Technology’s Computer Center, as
well as an undergraduate Computer Science student at the
university. He originally proposed the project that evolved
into Toasterkit.



Who we are - Thomas Bowen

Thomas is a system administrator for the New Mexico
Institute of Mining and Technology’s Computer Center. He
is also enrolled in the Computer Science program with
emphasis in Information Assurance.



Why NetBSD?

NetBSD is a popular operating system for embedded
systems. It is also extremely source-portable, meaning that
when written properly, anything targeting the kernel is
equally so. This way, the rootkit can work on any NetBSD
port!
Additionally, NetBSD is something of a research tool — new
ideas such as Veriexec and the kauth frameworka are
being worked on in NetBSD, and nobody (else) is targeting
them.

aWhich originated in Mac OS X.



History of Rootkits on NetBSD

Chkrootkit hasn’t been updated since NetBSD 1.6.
We’re at 4.0, with 5 soon to be released.

If there are any rootkits targeting recent versions of
NetBSD, none of them appear to be public.



Overview of NetBSD Architecture

Portable across hardware
The slogan: “Of course it runs NetBSD”. Excellent
support for cross-building.

Architecture of code
All of the architecture-dependent pieces are abstracted
behind common functions; we don’t have to worry
about byte order, memory-manager specifics, etc.

Loadable Kernel Modules (LKM)
Not commonly used, but are enabled by default. It also
allows code to infiltrate the kernel ex post facto;
security-conscious administrators might disable this.
Modules can add syscalls, sysctl nodes, executable
formats, filesystem drivers, etc.



Overview of NetBSD Architecture

Process security (kauth)
The kauth framework acts as a gatekeeper between
the kernel’s own routines, and is designed to be more
fine-grained than the previous UNIX superuser
approach of “all-or-nothing”. The kauth system is
used in the construction of other security models.

Security models
NetBSD supports custom security models. The default
model, bsd44, is the standard BSD securelevel and
superuser scheme. Also documented in the manual
page for secmodel is a sample module allowing users
with a uid below 1000a to bind to the normally-reserved
port range below 1024.

aThis range is generally used for system daemon accounts



What we’ve done and how we’ve done it

Elevated privileges within the kauth framework.

Made processes hidden via direct kernel object
manipulation

Portably removed write-protection from kernel memory
areas; required for modifying some kernel tables.

Hooked sysctl and ioctl functions in order to hide
sockets and modules.



Code Skeleton

NetBSD includes example code for kernel modules in
/usr/src/sys/lkm/{misc,syscall}/example,
and several fully-featured modules in
/usr/src/sys/lkm. The sample modules do very
little, but provide a skeleton to build other modules on.

Specifically, the misc example, originally intended to
show how a system call is inserted “by hand”, can be
modified to hook a system call.

A sample Makefile is also included, which is simply a
call into the already-existing NetBSD build process.



System Calls, hooking

System calls are exposed, among other ways, via a
global sysent array, though accessing this array is not
the standard way of placing a system call.
Each element of sysent[] is of type struct
sysent, containing information for the userspace —
number of arguments, size of arguments, flagsa, and
the function to be called.

We can modify existing behavior by changing the
function pointer (sysent[n].sy_call) to one of our
own design, if done carefully enough.

All system calls have a uniform prototype for use in the
kernel, and access any userspace arguments
indirectly.

aAs of NetBSD 4.0, the only flag is whether or not the syscall is

multiprocessor safe.



Building, loading, using an LKM

We use two types of loadable modules:
1. misc modules, which provide no automatic

initialization
2. syscall modules, which automatically find the

next unused system call number and insert
themselves there.

The NetBSD build system provides Make targets for
loading, unloading, and building the module, no matter
what its type.

The module system is controlled by ioctl commands
on /dev/lkm. This comes into play later, when we are
hiding modules.



Privilege Escalation with Kauth

The first module is relatively simple. It adds a system
call that gives the user escalated privileges. Since
NetBSD uses kauth, however, we can’t just set the
process’s User ID to 0 (root) and call it done.

Instead, we need to operate within kauth’s bounds.
The interface is documented in the manual pages, and
we use the kauth_cred_dup function on the
credentials of process #1 — init.

Since init shouldn’t be running under any
restrictions, considering its responsibilities, we
considered it a fair process from whom to “steal”
credentials.



Memory protection woes

NetBSD requires that a CPU support memory
management.

Some parts of kernel space are protected against
memory writes. This frustrated our immediate efforts to
hook functions that weren’t designed to be hooked.

In general, memory pages can be marked as any
combination of readable, writable, and executable.

Low-level details are machine-dependent

Thankfully, NetBSD provides us with uvm, a
virtual-memory system designed at WUSTL, which
abstracts memory management.

Documented in the manual page for uvm is a function
called uvm_map_protect, but calling it has no effect
on kernel pages.



Memory Unprotection

Removal of write-protection is required to modify
certain parts of kernel memory:

Character device tables, specifically lkm_cdevsw,
are protected against writes.
The sysctl tree is similarly marked read-only.

Removing this type of write-protection should be done
generically so as to maintain cross-platform
compatibility: we can’t go mucking around in the page
tables ourselves.

It also turns out that this work has already been done
for us: Hidden underneath a #ifdef KGDB in
uvm_glue.c, there is a function called
uvm_chgkprot. It does what we need, so we copied
it.



Hiding modules

Modules are easily visible by means of modstat —
without some way to hide this list, a rootkit is very
obvious.

modstat and friends operate by way of /dev/lkm,
making ioctl calls to load, unload, and request the
status of modules. Some way is needed to hook only
these ioctl operations, since hooking the actual
system call would be far too broad.

The functions for device nodes are stored in struct
cdevsw variables corresponding to each device: the
one for /dev/lkm is named lkm_cdevsw. One of the
slots in the structure is the responsible function for
ioctl. Inserting a hook function, which returns “does
not exist” whenever the module’s name begins with
“rootkit”, only requires unprotecting the memory.



Sysctl

sysctl is a tree structure originally from BSD, which
was designed to allow an administrator to modify
system parameters on-the-fly (without rebuilding the
kernel), and is still used for that, but is now also used
to report system information.

Each node in the tree can either contain a value for the
corresponding “key” or a pointer to a helper function
that is to handle processing of that particular branch of
the sysctl tree.

Node entries are write protected and modification of
helper functions is difficult using the documented
(sysctl(9)) API.



Sysctl - Hiding network sockets

Our solution is to:

1. Scan the sysctl tree, getting to the level above where
the function is to be found (using sysctl_locate).

2. Once the helper function node we want to modify is
found, unprotect the memory

3. Insert our own hook function, based on the original

The user utility netstat accesses open port data via a
sysctl helper function. Overriding this function allows us
to hide open network ports.



Process hiding

Hiding processes is accomplished by way of module
implementing a system call that takes the name of a
process to hide, and directly removes it from the
allproc global kernel list, as well as a few other lists.

This doesn’t prevent it from getting scheduled and
running, since the NetBSD scheduler doesn’t operate
on processes, instead working at thread granularity.

This type of attack is referred to as “direct kernel object
manipulation”.



Demo



Protection - Detecting hooks

Using a friendly loadable module, compare function pointer
in tables with address of actual function.

System call hooks
Check sysent table against the addresses of the
expected functions; see
/usr/src/sys/kern/init_sysent.c.

sysctl and ioctl hooks
Check specific helper function nodes. A full sweep is a
bit more difficult because there is no single source for
the “correct” functions.



Detecting other stuff

Detecting kauth
We don’t think there’s a viable solution to this. There
are many occasions where kauth_cred_dup is
appropriate and correct, so emitting a warning each
time it’s used would just be noise.

Detecting unprotection
Again, no easy detection. There isn’t a standard utility
to display the kernel’s memory mapping, but perhaps
pmap(1) can be extended to do so.



Prevention

The easiest way to prevent against attacks via loadable
modules is to rebuild your kernel without options
LKM enabled. Loadable modules are not frequently
used in NetBSD, but if your system does require one,
this might not be a usable solution.

Another, though more intrusive, suggestion is to use
security levels. Once the system has gone multi-user,
kernels compiled without options INSECURE apply a
variety of restrictions, including that kernel modules
cannot be loaded.

Unfortunately, common architectures such as
i386/amd64, and mac68k/macppc, default to
INSECURE. This also doesn’t prevent someone
sufficiently clever from loading modules before the
securelevel gets raised.



Questions?



References

Our primary reference text for this project was Designing
BSD Rootkits, by Joseph Kong. Other than that, the
NetBSD source code was an excellent asset, as well as
being well-documented and clear.


	Toasterkit - A NetBSD Rootkit
	Who we are - Anthony Martinez
	Who we are - Thomas Bowen
	Why NetBSD?
	History of Rootkits on NetBSD
	Overview of NetBSD Architecture
	Overview of NetBSD Architecture
	What we've done and how we've done it
	Code Skeleton
	System Calls, hooking
	Building, loading, using an LKM
	Privilege Escalation with Kauth
	Memory protection woes
	Memory Unprotection
	Hiding modules
	Sysctl
	Sysctl - Hiding network sockets
	Process hiding
	Demo
	Protection - Detecting hooks
	Detecting other stuff
	Prevention
	Questions?
	References

